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Definition of Error 

Error: The difference between an obtained value and the true value. 

• The obtained value can be measured, computed, or estimated 

• Errors can be caused by any anything: 

– In experimental measurements: calibration error, random measurement 
error, systematic measurement error, mistake, blunder, etc 

– In modeling: approximations, simplifications, lack of knowledge of physical 
processes, error in judgment, error in completeness, mistake, blunder, etc 

– In simulation: numerical approximations, spatial and temporal discretization, 
iterative solutions, finite precision arithmetic, programming errors, etc 

• The true value is only known when certain situations occur: 

– Experimental measurements: a calibration standard is used for a quantity 

– Modeling and simulation: a highly accurate reference value is used 

• When a true value is not known or defined, the term uncertainty is more 
useful than the term error 

E = yobtained ytrue
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Types of Uncertainty 

Aleatory uncertainty: uncertainty due to inherent randomness. 

– Also referred to as irreducible uncertainty, variability, and stochastic 

uncertainty 

Aleatory uncertainty is a characteristic of the system of interest 

• Examples: 

– Variation in thermodynamic or mass properties due to manufacturing 

– Variation in joint stiffness and damping in structures 

Epistemic uncertainty: uncertainty due to lack of knowledge. 

– Also referred to reducible uncertainty, knowledge uncertainty, model 

form uncertainty, and subjective uncertainty 

Epistemic uncertainty is a characteristic of our knowledge of the system 

• Examples: 

– Poor understanding of physical phenomena, e.g., fracture mechanics 

– Poor knowledge or experience of failure, misuse, or hostile scenarios 

(Ref: Kaplan and Garrick, 1981; Morgan and Henrion, 1990; Ayyub and Klir, 2006) 
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Characterization of Aleatory Uncertainty 

Probability density function 

(PDF) 
Cumulative distribution function 

(CDF) 

System Response Quantity of Interest System Response Quantity of Interest 
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Characterization of Epistemic Uncertainty 

A purely epistemic uncertainty 

is given by an interval (a,b) 

A mixture of epistemic and aleatory 

uncertainty is given by a p-box 

This mathematical structure is 

referred to as an imprecise probability. 
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Traditional Methods for 

Model Accuracy Assessment 

Traditional methods of measuring the accuracy of computational results 
have been either qualitative or semi-quantitative 

Some examples are: 

(Ref: Oberkampf, Trucano, and Hirsch, 2003) 
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Traditional Methods for 

Assessment of Model Accuracy (cont)  

More quantitative and precise methods of assessment: 
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Various Approaches for Comparing 

Computational and Experimental Results 

1) Estimation of uncertain input parameters to obtain best agreement 
between simulation and experiment (point estimation): 

- Ex: Bendat and Piersol (2000), Wirsching, Paez and Ortiz (1995) 

2) Hypothesis testing techniques used in statistical inference: 

- Ex: Hills and Trucano (2002), Rutherford and Dowding (2003), Dowding et al 
(2004), Chen et al (2004), Hills (2006) 

- The result is a probability that simulation and experiment are “the same” 

3) Bayesian updating of probability distributions for uncertain input 
parameters used in the computational model: 
- Ex: Kennedy and O’Hagan (2001), Hasselman et al (2001), Zhang and 

Mahadevan (2003), O’Hagan (2006), Bayarri et al (2007), Chen et al (2008) 

- The emphasis is on calibrating probability distributions of parameters 

4) Comparison of mean values from simulation and experiment: 

- Ex: Coleman and Stern (1997), Sprague and Geers (1999), Oberkampf and 
Trucano (2000), Easterling (2001), Oberkampf and Barone (2006) 

5) Comparison of cumulative distribution functions from simulation and 
experiment: 
- Ex: Ferson et al (2008), Ferson and Oberkampf (2009) 
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What is a Validation Metric? 

• Validation metric is a statistical measures of agreement between 

computational results and experimental measurements for system 
response quantities of interest 

• Steps to evaluate a validation metric result: 

1) Choose a system response quantity of interest 

2) Experimentally measure, if possible, all input quantities needed for the 

code 

3) Experimentally measure the system response quantity of interest 

4) Using the code and all the input data provided, compute the system 

response quantity of interest  

5) Compute a difference between the experimental measurements and the 

computational results 
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Validation Assessment, 

Calibration and Prediction 

(Ref: Oberkampf and Barone, 2006) 
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Area Validation Metric 

• The validation metric is defined to be the area between the 

CDF from the simulation and the empirical distribution 

function (EDF) from the experiment 

d(F,Sn ) = F(x) Sn (x) dx

Experimental 

Measurements, 

Sn(x) 

CDF from 

Simulation, F(x) 

Area d 

(Minkowski L1 metric) 

(Ref: Ferson et al, 2008) 

12



Examples of the 

Area Validation Metric 

Three different sets of experimental measurements. 

The same cumulative distribution function (CDF) predicted by the model.  

Decreasing values of d for each set of measurements. 
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Examples of the 

Area Validation Metric 

A single measurement from three different experiments. 

The same cumulative distribution function (CDF) predicted by the model.  

The metric d is 

dimensional and 

scale dependent. 
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Examples of the 

Area Validation Metric 

Features of the area validation metric: 

– The metric measures the shortest average absolute difference of deviates from F 

and Sn

– d = 0 means there is no evidence that the simulation and the experiment are in 

disagreement. 

– The area validation metric can also be computed for a probability box, i.e., aleatory 

and epistemic uncertainty exist in either/both the simulation and the experiment 

Simulation 

samples 

Experimental 

measurements 

The simulation 

can also be 

represented by 

individual samples. 

Area d 
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Structure of Non-deterministic Simulations 
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Steps in Non-Deterministic Simulation 

1. Identify all relevant sources of uncertainty 

2. Characterize each source of uncertainty 

3. Estimate solution error in SRQs of interest 

4. Estimate uncertainty in SRQs of interest 

5. Update model parameters 

6. Conduct sensitivity analysis 
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Step 1: Identify all Relevant 

Sources of Uncertainty 

Identify all model input uncertainties within the system and in 

the surroundings that can affect system responses. 
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Sources of Uncertainty 

• Uncertainty in model parameters: 

– Input data parameters (independently measureable and non-

measureable) 

– Uncertainty modeling parameters 

– Numerical algorithm parameters 

• Numerical solution error: 

– Round-off error 

– Iterative error 

– Spatial and temporal discretization error 

• Model form uncertainty: 

– Estimated over the validation domain 

– Extrapolated outside of the validation domain 
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Step 2: 

Characterize Each Source of Uncertainty 

There are three dominant approaches to nondeterministic simulation: 

1. Traditional probabilistic methods 

– All uncertainties are characterized as a probability distribution 

– Epistemic (lack of knowledge) uncertainties are either ignored or characterized 
as a uniform probability density function 

2. Bayesian inference 
– Assume prior distributions represent both frequency of occurrence (aleatory) 

uncertainties and personal belief of likelihood (epistemic) uncertainties 

– Update the prior distributions for uncertain parameters using available 
experimental data and Bayes formula 

– Compute new predictions using updated parameter distributions 

3. Probability bounds analysis 

– Closely related to two-dimensional (or second order) Monte Carlo methods 

– Keep aleatory and epistemic uncertainties segregated throughout the analysis 

– Characterize aleatory uncertainties as probability distributions 

– Characterize epistemic uncertainties as interval-valued quantities 

– Represent system response quantities (SRQs) as interval-valued probability 
distributions, i.e., p-boxes 
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Model Uncertainty 

• To estimate model 

uncertainty, a validation 

metric result must be 

computed over the 

application domain 

• Over the validation 

domain, one can use 

either an: 

- Interpolation function 

- Regression fit 

• Beyond the validation 
domain, one must 

extrapolate the validation 

metric 
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Step 3: 

Estimate Solution Error in SRQs of Interest 

 Estimate the magnitude of the numerical solution errors on   

each  of the SRQs of interest. 

(Code verification should have been completed on all code options that 

are exercised in the analysis.) 

• Use stationary and non-stationary iterative error estimators for: 

- Initial value problems (stationary methods commonly used) 

- Boundary value problems (stationary and Krylov subspace methods used) 

• Two methods for controlling temporal discretization error: 

- Error estimated at each time step, compared to some error criterion, and 

appropriate adjustments are made in the time step size 

- An entire solution is computed with a fixed time step and then recomputed 

with either a smaller or larger time step 
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Estimation of Spatial Discretization Error 

• Zienkiewicz-Zhu super-convergent patch recovery (ZZ-SPR) method 

is probably the most widely used finite-element-based error 

estimator. 

• ZZ-SPR can provide error estimates in local SRQs if: 

– Finite element types are used that have the super-convergent property 

– There is strong evidence that the mesh is adequately resolved 

• Richardson-extrapolation-based methods can be used on 

essentially any SRQs if: 

– Meshes are uniformly refined from one mesh to the next 

– Meshes are in the asymptotic region 

– A minimum of two mesh solutions are required, but this is risky 

The sum of all numerical solution error contributors can be written as 

 where each quantity is an interval-valued quantity, i.e., an epistemic 

uncertainty 

(UN )yi = UI yi
+ US yi

+ UT yi
for i = 1,2,…n
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Step 4: 

Estimate Uncertainty in SRQs of Interest 

 Propagate all sources of uncertainty through the through the 

model to obtain the uncertainty in the SRQs of interest. 

y = f (x)

x = x1, x2 , xm{ }

y = y1, y2 , yn{ }
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Example of the Propagation Technique 

for Probability Bounds Analysis 

• Let     be decomposed into aleatory and epistemic input quantities 

– where                                   represents all aleatory uncertainties 

– where                                          represents all epistemic uncertainties 

• Epistemic uncertainties typically occur in environments, scenarios, 

physical parameters, and parameters in ICs, BCs, and system excitation 

• Using PBA and sampling methods (Monte Carlo or Latin Hypercube), 

one can keep aleatory and epistemic uncertainties separated 

• Use a sampling procedure with an inner loop for the aleatory 

uncertainties, and an outer loop for the epistemic uncertainties: 

Choose one sample from all 

• Choose a random sample from each 

– Propagate sampled quantities through the model 

• Choose random samples from       until a satisfactory CDF is obtained 

Choose random samples from all       until sufficient converge is obtained 

 x

 
xA = x1, x2 , x

 
x = xA , xE( )

 
xE = x

+1, x +2 , xm

 
xA

xE

xi in xE
 
xi in xA

o
u

te
r 

in
n

er
 

25



Cumulative Distribution Functions 

for an SRQ of Interest 

• For each sample of      , a 

number of samples of      

are propagated through 

the model 

• Here we have ten samples 

for 

• All probabilities between 

the minimum and 

maximum CDFs are 

possible at a given value 

of SRQ 

• The result is an interval 

valued probability, a p-box 

xE
 
xA

xE
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Example of a p-box Due to 

Aleatory and Epistemic Input Uncertainty 

• Example of 2-D, steady 

state, heat transfer 

through a wall (Ch. 13) 

• Thermal conductivity, k, 

is an aleatory uncertainty 

• Convective heat transfer 

coefficient, h, is an 

epistemic uncertainty 

• If h is treated as a uniform 

PDF in a traditional 

nondeterministic 

analysis, the uncertainty 

is under represented 

Epistemic uncertainty 

due to h 
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Prediction Within the Validation Domain: 

Interpolation 

• Prediction can be: 
– Interpolated between 

validation points 

– Computed using 
surrogate models 

• A validation metric 
can be computed at 
each experimental 
point 

• Difficult to determine 
if you are interpolating 
or extrapolating in a 
high-dimensional 
input space 
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Prediction Far Outside the Validation Domain: 

Large Extrapolation 

• Extrapolations can 

occur in terms of: 

– Input quantities 

– Model uncertainty 

• Extrapolation may also 

require: 

– Large changes in 

coupled physics, e.g., 

heating effects on 
structural dynamics 

– Large changes in 

geometry or 

subsystem 

interactions, e.g., 

abnormal or hostile 

environments 

• Large extrapolations 

should result in large 

increases in 

uncertainty 
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Example of p-box with a Mixture of 

Aleatory and Epistemic Uncertainty 

From Roy and 

Oberkampf (2011) 
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Example Showing Model Form Uncertainty 

Predicted Track of 

Emily 2005 

From Green (2007) 
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Step 5: 

Update Model Parameters 
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How can parameter updating 

and validation coexist?  
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Step 6: 

Conduct a Sensitivity Analysis 

Sensitivity analysis (SA) is the determination how a change in any    
aspect of the model changes any response of the model. 

• Local SA determines how outputs change locally as a function of 
inputs: 

– Commonly used to determine which system design parameters can be 
optimized for improved system performance or safety 

– Input parameters are optimized for specific conditions, e.g., expected value 

• Global SA determines how the uncertainty structure of the inputs 
maps to the uncertainty structure of the outputs: 

– Analysis usually begins with examining scatter plots of responses as a 
function of input uncertainties 

(Helton et al, 2006; Saltelli et al, 2008) 
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Example of Local Sensitivity Analysis 

Suppose that                                and  x = x1, x2 , x3{ }
 
y = y1, y2{ }

 Numerical solution “noise” can arise and yield erroneous results 
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Example of Global Sensitivity Analysis 

• Assume that 

• All uncertain inputs are 

aleatory 

• Assume that 100 Monte 

Carlo samples have 

been computed 

• Then one can determine 

if any trend in y exists 

as a function of  

y = f x1, x2 , x3, x4( )

x1, x2 , x3, x4
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Concluding Remarks 

• Validation metrics are proving very effective in quantifying 

model accuracy 

• Bayesian updating: 

–  Traditional approaches are model calibration 

– Kennedy and O’Hagan’s (2001) approach calibrates parameters and 

attempts to quantify model accuracy at the same time 

• Ignoring numerical solution error and model form uncertainty 

will underestimate the total predictive uncertainty 

• Additional research is needed to improve extrapolation of 

model form uncertainty 

• Simulation of chaotic processes is highly suspect 

• How much validation and uncertainty quantification is enough? 
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